Frequentist model averaging estimation: a review
نویسندگان
چکیده
In applications, the traditional estimation procedure generally begins with model selection. Once a specific model is selected, subsequent estimation is conducted under the selected model without consideration of the uncertainty from the selection process. This often leads to the underreporting of variability and too optimistic confidence sets. Model averaging estimation is an alternative to this procedure, which incorporates model uncertainty into the estimation process. In recent years, there has been a rising interest in model averaging from the frequentist perspective, and some important progresses have been made. In this paper, the theory and methods on frequentist model averaging estimation are surveyed. Some future research topics are also discussed.
منابع مشابه
Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملPrinciples of multilevel modelling.
BACKGROUND Multilevel modelling, also known as hierarchical regression, generalizes ordinary regression modelling to distinguish multiple levels of information in a model. Use of multiple levels gives rise to an enormous range of statistical benefits. To aid in understanding these benefits, this article provides an elementary introduction to the conceptual basis for multilevel modelling, beginn...
متن کاملBayesian Averaging, Prediction and Nonnested Model Selection
This paper studies the asymptotic relationship between Bayesian model averaging and postselection frequentist predictors in both nested and nonnested models. We derive conditions under which their difference is of a smaller order of magnitude than the inverse of the square root of the sample size in large samples. This result depends crucially on the relation between posterior odds and frequent...
متن کاملFrequentist Model Averaging with missing observations
Model averaging or combining is often considered as an alternative to model selection. Frequentist model averaging (FMA) is considered extensively and strategies for the application of FMA methods in the presence of missing data based on two distinct approaches are presented. The first approach combines estimates from a set of appropriate models which are weighted by scores of a missing data ad...
متن کاملOptimal Structural Nested Models for Optimal Sequential Decisions
I describe two new methods for estimating the optimal treatment regime (equivalently, protocol, plan or strategy) from very high dimesional observational and experimental data: (i) g-estimation of an optimal double-regime structural nested mean model (drSNMM) and (ii) g-estimation of a standard single regime SNMM combined with sequential dynamicprogramming (DP) regression. These methods are com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Systems Science & Complexity
دوره 22 شماره
صفحات -
تاریخ انتشار 2009